• Zielgruppen
  • Suche

Role of Intrapulse Coherence in Carrier-Envelope Phase Stabilization

Our paper concerning a suitable definition for characterization of coherence properties in view of carrier-envelope phase stabilization has been published in Physical Review Letters .




The concept of coherence is of fundamental importance for describing the physical characteristics of light and for evaluating the suitability for experimental application. In the case of pulsed laser sources, the pulse-to-pulse coherence is usually considered for a judgment of the compressibility of the pulse train. This type of coherence is often lost during propagation through a highly nonlinear medium, and pulses prove incompressible despite multioctave spectral coverage. Notwithstanding the apparent loss of interpulse coherence, however, supercontinua enable applications in precision frequency metrology that rely on coherence between different spectral components within a laser pulse. To judge the suitability of a light source for the latter application, we define an alternative criterion, which we term intrapulse coherence.This definition plays a limiting role in the carrier-envelope phase measurement and stabilization of ultrashort pulses. It is shown by numerical simulation and further corroborated by experimental data that filamentation-based supercontinuum generation may lead to a loss of intrapulse coherence despite near-perfect compressibility of the pulse train. This loss of coherence may severely limit active and passive carrier-envelope phase stabilization schemes and applications in optical high-field physics.


Nils Raabe, Tianli Feng, Tobias Witting, Ayhan Demircan, Carsten Brée, and Günter Steinmeyer (2017): Role of Intrapulse Coherence in Carrier-Envelope Phase Stabilization, Physical Review Letters 119, 123901

DOI: 10.1103/PhysRevLett.119.123901